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Abstract

In this paper, we determine the density of a nonsingular noncentral matrix variate
beta type I and II distributions under different definitions.
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1 Introduction

Central and noncentral matrix variate beta type I and II distributions have
been studied by different authors utilising diverse approaches, see Olkin and
Rubin (1964), Khatri (1970), Muirhead (1982), Cadet (1996), Gupta and Na-
gar (2000), Dı́az-Garćıa and Gutiérrez-Jáimez (2001), among many others.
These distributions play a very important role in various problems for proving
hypotheses in the context of multivariate analysis, including canonical corre-
lation analysis, the general linear hypothesis in MANOVA and the multiple
matrix variate correlation analysis, see Muirhead (1982), Rao (1973), Srivas-
tava (1968) and Kshirsagar (1961). Similarly, beta noncentral distributions are
to be found in the context of shape theory, see Goodall and Mardia (1993).
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In all these applications, the use of beta-type distributions had not been de-
veloped as expected and wished for, due particularly to the fact that such
distributions depend on hypergeometric functions with a matrix argument or
on zonal polynomials, which until very recently were quite complicated to
evaluate. The literature has recently included descriptions of algorithms that
are very efficient for calculating both zonal polynomials and hypergeometric
functions with a matrix argument; these can be used more widely and more ef-
ficiently in noncentral distributions in general, see Gutiérrez et al. (2000), Sáez
(2004), Demmel and Koev (2004), Koev (2004), Koev and Demmel (2004) and
Dimitriu et al. (2005).

As well as the classification of the beta distribution, as beta type I and type
II (see Gupta and Nagar (2000) and Srivastava and Khatri (1979)), two defi-
nitions have been proposed for each one of these. Let us focus initially on the
beta type I distribution; if A and B have a central Wishart distribution, i.e.
A ∼ Wm(r, I) and B ∼ Wm(s, I) independently, then the beta matrix U can
be defined as

U =





(A + B)−1/2A((A + B)−1/2)′, Definition 1 or,

A1/2(A + B)−1(A1/2)′, Definition 2,
(1)

where C1/2(C1/2)′ = C is a reasonable nonsingular factorization of C, see
Gupta and Nagar (2000), Srivastava and Khatri (1979) and Muirhead (1982).
Is easy to see that under definition 1 and 2 its density function is given by

fU(U) =
1

βm[r/2, s/2]
|U |(r−m−1)/2|Im − U |(s−m−1)/2, 0 < U < Im, (2)

denoting as U ∼ BIm(r/2, s/2), with r ≥ m and s ≥ m; where βm[r/2, s/2]
denotes the multivariate beta function defined by

βm[b, a] =
∫

0<S<Im

|S|a−(m+1)/2|Im − S|b−(m+1)/2(dS) =
Γm[a]Γm[b]

Γm[a + b]
,

where Γm[a] denotes the multivariate gamma function and is defined as

Γm[a] =
∫

R>0

etr(−R)|R|a−(m+1)/2(dR),

Re(a) > (m− 1)/2 and etr(·) ≡ exp(tr(·)).

Alternatively, a third version of the beta type I matrix has been proposed, see
Srivastava and Khatri (1979, pp. 94-95), Srivastava (1968), Muirhead (1982,
pp. 451-452) and Gupta and Nagar (2000). We assumed above that B ∼
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Wm(s, I) and we wrote Y ∼ Nr×m(0, Ir ⊗ Im), m > r, independently of B.
Then U = Y (Y ′Y +B)−1Y ′ = Y (A+B)−1Y ′, and moreover U ∼ BIr(m/2, (s+
r−m)/2). However, note that in the central and non-central cases, the density,
properties and associated distributions can be obtained from the definitions
in (1) by replacing m by r, r by m and s by s + r −m, i.e., by making the
substitutions

m → r, r → m, s → s + r −m, (3)

see Srivastava and Khatri (1979, p. 96) or Muirhead (1982, eq. (7), p. 455).
For this reason, we focus on the definitions given in (1). On extending these
definitions to the noncentral case, i.e. when B has a noncentral Wishart distri-
bution, B ∼ Wm(s, I, Ω), a further classification is given in the literature, in
which the beta matrix is defined as follows, see Greenacre (1973) and Gupta
and Nagar (2000):

U =





(A + B)−1/2A((A + B)−1/2)′, denoting as BI1(A)m(r/2, s/2, Ω)

(A + B)−1/2B((A + B)−1/2)′, denoting as BI1(B)m(s/2, r/2, Ω)
(4)

under Definition 1; or

U =





A1/2(A + B)−1(A1/2)′, denoting as BI2(A)m(r/2, s/2, Ω)

B1/2(A + B)−1(B1/2)′, denoting as BI2(B)m(s/2, r/2, Ω)
(5)

under Definition 2. Both distributions, types A and B, play a fundamental role
in various areas of statistics, for example in the W and U criteria proposed
by Wilks (1932).

The density BI1(A)m(·, ·, ·), when the range of Ω is one, the linear case, has
been obtained by Kshirsagar (1961). In the general case, the distributions
BI1(A)m(·, ·, ·) and BI1(B)m(·, ·, ·) are found by Gupta and Nagar (2000, pp.
188-189) 1 , but both expressions depend on an integral of the following type
(see also Greenacre (1973) or Roux (1975))

∫

C>0

|C|a+b−(m+1)/2 etr
(
−1

2
R−1C

)
0F1

(
b; 1

4
SC1/2X(C1/2)′

)
(dC), (6)

where 0 < X < Im and aFb is the matrix argument hypergeometric function,

1 In both final expressions there is a small error, that is: in the second argument of
the hypergeometric function 0F1 in both densities is necessary to interchange Σ−1

and Θ, in their notation.
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see Muirhead (1982, p. 258). The problem of evaluating this integral was
proposed earlier by Constantine (1963), Khatri (1970) and reconsidered in
Farrell (1985, p. 191).

This problem of finding a closed form for the beta distributions was addressed
by Greenacre (1973), who proposed the symmetrised multivariate density of
a positive definite matrix, defined as

fS(W ) =
∫

O(m)

f(HWH ′)(dH), (7)

where W : m × m > 0 has the density function f(W ), O(m) = {H ∈
<m×m|HH ′ = H ′H = Im} and (dH) denotes the normalised invariant mea-
sure on O(m) (Muirhead, 1982, p. 72), obtaining the symmetrised density of
BI1(A)m(·, ·, ·) and BII2(B)m(·, ·, ·), see also Roux (1975).

Under Definition 2, only the distribution BI2(A)m(·, ·, ·) presents the same
problem, i.e. its density depends on an integral of the type (6). On the other
hand, Dı́az-Garćıa and Gutiérrez-Jáimez (2001) found an explicit expression
for the density of the distribution BI2(B)m(·, ·, ·) and applied it to calculating
the expected value of a zonal polynomial, see also Srivastava (1968). This same
distribution was given as an extension of the univariate beta density by Asoo
(1969) (cited by Gupta and Nagar (2000)) and proposed as a definition of the
noncentral matrix variate beta type I density, see Gupta and Nagar (2000,
Definition 5.5.1, p. 190).

A similar situation arises with the beta type II distribution, with which we
have the following three definitions:

V =





B−1/2A(B−1/2)′, Definition 1,

A1/2B−1(A1/2)′, Definition 2,

Y 1/2B−1Y ′, Definition 3.

(8)

with the distribution being denoted as V ∼ BIIm(r/2, s/2). Similarly to the
case of the beta type I distribution, the results under Definition 3 can be
found from the results obtained with Definition 2, applying the transforms
(3), seeJames (1964) and Muirhead (1982, pp.451-455).

On extending these definitions to the noncentral case, we obtain definitions
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that are parallel to those given in (4) and (5),

V =





B−1/2A(B−1/2)′, denoting as BII1(A)m(r/2, s/2, Ω)

A−1/2B(A−1/2)′, denoting as BII1(B)m(s/2, r/2, Ω)
(9)

under Definition 1; or

V =





A1/2B−1(A1/2)′, denoting as BII2(A)m(r/2, s/2, Ω)

B1/2A−1(B1/2)′, denoting as BII2(B)m(s/2, r/2, Ω)
(10)

under Definition 2.

In this case, the distributions BII1(A)m(·, ·, ·) and BII2(B)m(·, ·, ·) have been
studied by James (1964), Muirhead (1982, Section 10.4) and Gupta and Na-
gar (2000, Section 5.5). Once again, Asoo (1969) (cited by Gupta and Nagar
(2000)) proposed BII2(B)m(·, ·, ·) as a definition of the noncentral matrix vari-
ate beta type II density, see Gupta and Nagar (2000, Definition 5.5.12, p. 190).

Note that, to a certain extent, the fact that under the type I definitions, both
for beta type I and type II, their corresponding densities cannot be found
in an explicit form, which is why the type 2 definitions were proposed, thus
avoiding the difficulty in evaluating the type of integrals found in (6).

In the present paper, we propose a very simple means of evaluating this integral
(6), see Section 2. In Section 3 we describe all the densities of the type I
distributions that are obtained from Definitions (4) and (5), observing that the
corresponding non-central densities coincide under Definitions 1 and 2. These
results are presented in Section 4 for the case of the beta type II distribution.
Finally, we propose definitions for the beta type I and II distributions under
their different definitions.

2 Preliminar results

From Greenacre (1973), denote

f(X) = etr
(
−1

2
Σ−1XX ′) ,
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from which the symmetrised function fs(X) is given by, see Muirhead (1982,
Theorem 7.3.3, p. 260),

fs(X) =
∫

O(m)

etr(−1
2
Σ−1HXH ′HX ′H)(dH) = 0F

(m)
0

(
−1

2
Σ−1, XX ′) , H ∈ O(m)

where aF
(m)
b is the hypergeometric function with two matrix arguments, see

Muirhead (1982, p. 260).

Our approach is also to apply this idea from Greenacre (1973), in an inverse
way, i.e. in the knowledge that

fs(X) = 0F
(m)
0

(
−1

2
Σ−1, XX ′) =

∫

O(m)

f(HXH ′)(dH), (11)

we wish to identify the function f(X). Of course, this procedure can be applied
for any function f(X), and so it is easy to evaluate the integral (6) in an explicit
way, as shown below:

Theorem 1 Denote the integral (6) by g(X). Then

i) gs(X) = Γ[(a + b)]|2R|(a+b)
1F

(m)
1

(
a + b; b; 1

2
SR,X

)
,

ii) g(X) = Γ[(a + b)]|2R|(a+b)
1F1

(
a + b; b; 1

2
SRX

)
.

Proof.

g(X) =
∫

C>0

|C|a+b−(m+1)/2 etr
(
−1

2
R−1C

)
0F1

(
b; 1

4
SC1/2X(C1/2)′

)
(dC),

then the symmetrised function g is given by

gs(X) =
∫

C>0

|C|a+b−(m+1)/2 etr
(
−1

2
R−1C

)

∫

O(m)

0F1

(
b; 1

4
SC1/2HXH ′(C1/2)′

)
(dH)(dC),

from Muirhead (1982, theorem 7.3.3, p. 260) we have

gs(X) =
∫

C>0

|C|a+b−(m+1)/2 etr
(
−1

2
R−1C

)
0F

(m)
1

(
b; 1

4
SC, X

)
(dC),

therefore, from Muirhead (1982, theorem 7.3.4, p. 260)

gs(X) = Γ[(a + b)]|2R|(a+b)
1F

(m)
1

(
a + b; b; 1

2
SR,X

)
.
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Now, by applying the inverse procedure (11)

gs(X) = Γ[(a + b)]|2R|(a+b)
1F

(m)
1

(
a + b; b; 1

2
SR, X

)
,

=
∫

O(m)

g(HXH ′)(dH)

= Γ[(a + b)]|2R|(a+b)
∫

O(m)

1F1

(
a + b; b; 1

2
SRHXH ′) (dH),

from which

g(X) = Γ[(a + b)]|2R|(a+b)
1F1

(
a + b; b; 1

2
SRX

)
.

¤

Henceforth, the density function of X is denoted by fX(X) and its correspond-
ing symmetrised density function by fs(X). Moreover, the density function
obtained by applying the idea behind Theorem 1 will be termed the nonsym-
metrised density function in order to distinguish it from the integral form of
its density in the corresponding cases. Nevertheless, we should always bear
in mind that the fundamental goal of this study is, in fact, to propose the
nonsymmetrised density as the real density.

3 Noncentral beta type I distribution

Let us denote the central beta type I density (2) as BIm(U ; r/2, s/2), thus,

Theorem 2 Let W ∼ BI1(A)(r/2, s/2, Ω) then

(1) Its density function is

fW (W ) =
etr(−1

2
Ω)

2m(r+s)/2Γm[r/2]Γm[s/2]
|W |(r−m−1)/2|I −W |(s−m−1)/2

×
∫

C>0

|C|(r+s−m−1)/2 etr
(
−1

2
C

)
0F1

(
1
2
s; 1

4
ΩC1/2(I −W )(C1/2)′

)
(dC).

(2) Its symmetrised density function is

fs(W ) = BIm(W ; r/2, s/2) etr
(
−1

2
Ω

)
1F

(m)
1

(
1
2
(r + s); 1

2
s; 1

2
Ω, (I −W )

)

(3) Its nonsymmetrised density function is

fW (W ) = BIm(W ; r/2, s/2) etr
(
−1

2
Ω

)
1F1

(
1
2
(r + s); 1

2
s; 1

2
Ω(I −W )

)
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Proof. (1) is given in Gupta and Nagar (2000, Theorem 5.5.1, p. 188). (2)
and (3) follow from (1) by the application of Theorem 1. ¤

Theorem 3 Let U ∼ BI1(B)(s/2, r/2, Ω) then

(1) Its density function is

fU(U) =
etr(−1

2
Ω)

2m(r+s)/2Γm[r/2]Γm[s/2]
|U |(s−m−1)/2|I − U |(r−m−1)/2

×
∫

C>0

|C|(r+s−m−1)/2 etr
(
−1

2
C

)
0F1

(
1
2
s; 1

4
ΩC1/2U(C1/2)′

)
(dC).

(2) Its symmetrised density function is

fs(U) = BIm(U ; s/2, r/2) etr
(
−1

2
Ω

)
1F

(m)
1

(
1
2
(r + s); 1

2
s; 1

2
Ω, U

)

(3) Its nonsymmetrised density function is

fU(U) = BIm(U ; s/2, r/2) etr
(
−1

2
Ω

)
1F1

(
1
2
(r + s); 1

2
s; 1

2
ΩU

)

Proof. (1) is considered in Gupta and Nagar (2000, p. 189) and Roux (1975).
(2) s proposed by Greenacre (1973) and Roux (1975) and (3) se siguen (1) or
(2) follows from (1) or (2) by the application of Theorem 1. ¤

Similarly, from Definition 2 we have:

Theorem 4 Let W ∼ BI2(A)(r/2, s/2, Ω) then

(1) Its density function is

fW (W ) =
etr(−1

2
Ω)

2m(r+s)/2Γm[r/2]Γm[s/2]
|W |(r−m−1)/2|I −W |(s−m−1)/2

×
∫

A>0

|A|(r+s−m−1)/2 etr
(
−1

2
AW−1

)
0F1

(
1
2
s; 1

4
ΩA1/2(I −W )W−1(A1/2)′

)
(dA).

(2) Its symmetrised density function is the same as in Theorem 2(2).
(3) Its nonsymmetrised density function is the same as in Theorem 2(3).

Proof. (1) is obtained in a similar way to the result for Theorem 2(1). (2)
and (3) follow from (1) by the application of Theorem 1. ¤

Theorem 5 Let U ∼ BI2(B)(s/2, r/2, Ω) then

(1) Its density function and nonsymmetrised density agree and are the same
that in Theorem 3(3).

(2) Its symmetrised density function is the same as in Theorem 3(2).
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Proof. (1) is obtained by Dı́az-Garćıa and Gutiérrez-Jáimez (2001), see also
Srivastava (1968). And (2) follows from (1) by the application of Theorem
7.3.3 in Muirhead (1982, p.260). ¤

4 Noncentral beta type II distribution

Let us denote the central beta type II density as

BIIm(V ; r/2, s/2) =
1

β[r/2, s/2]
|V |(r−m−1)/2|I + V |−(r+s)/2, V > 0.

Then from Definition 1, we have

Theorem 6 Let V ∼ BII1(A)(r/2, s/2, Ω) then

(1) Its density function and non-symmetrised density agree, and moreover
are given by

fV (V ) = BIIm(V ; r/2, s/2) etr
(
−1

2
Ω

)
1F1

(
1
2
(r + s); 1

2
s; 1

2
Ω(I + V )−1

)

(2) Its symmetrised density function is

fs(V ) = BIIm(V ; r/2, s/2) etr
(
−1

2
Ω

)
1F1

(
1
2
(r + s); 1

2
s; 1

2
Ω, (I + V )−1

)

Proof. (1) is addressed in Gupta and Nagar (2000, Theorem 5.5.3, p. 190).
And (2) is obtained from (1) by the application of Theorem 7.3.3 in Muirhead
(1982, p.260), see also Greenacre (1973). ¤

Theorem 7 Let F ∼ BII1(B)(s/2, r/2, Ω) then

(1) Its density function is

fF (F ) =
etr(−1

2
Ω)

2m(r+s)/2Γm[r/2]Γm[s/2]
|F |(s−m−1)/2

×
∫

B>0

|B|(r+s−m−1)/2 etr
(
−1

2
(I + F )B

)
0F1

(
1
2
s; 1

4
ΩB1/2F (B1/2)′

)
(dB).

(2) Its symmetrised density function is

fs(F ) = BIIm(F ; s/2, r/2) etr
(
−1

2
Ω

)
1F

(m)
1

(
1
2
(r + s); 1

2
s; 1

2
Ω, (I + F )−1F

)

(3) Its nonsymmetrised density function is

fF (F ) = BIIm(F ; s/2, r/2) etr
(
−1

2
Ω

)
1F1

(
1
2
(r + s); 1

2
s; 1

2
Ω(I + F )−1F

)
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Proof. (1) is obtained in a similar way to the result in Theorem 2(1). (2) and
(3) are obtained from (1) by the application of Theorem 1. ¤Similarly, under
Definition 2, we can state:

Theorem 8 Let V ∼ BII2(A)(r/2, s/2, Ω) then

(1) Its density function is

fV (V ) =
etr(−1

2
Ω)

2m(r+s)/2Γm[r/2]Γm[s/2]
|V |−(s+m+1)/2

×
∫

A>0

|A|(r+s−m−1)/2 etr
(
−1

2
A(I + V −1)

)
0F1

(
1
2
s; 1

4
ΩA1/2V −1(A1/2)′

)
(dA).

(2) Its symmetrised density function is the same as in Theorem 6(1).
(3) Its nonsymmetrised density function is the same as in Theorem 6(2).

Proof. (1) is obtained in a similar way to the result in Theorem 4(1). (2) and
(3) follow from (1) by the application of Theorem 1. ¤

Theorem 9 Let F ∼ BII2(B)(s/2, r/2, Ω) then

(1) Its density function and non-symmetrised density agree and are the same
as in Theorem 7(3).

(2) Its symmetrised density function is the same as in Theorem 7(2).

Proof. (1) is obtained from Muirhead (1982, Theorem 10.4.1, p.449), see also
James (1964). And (2) is obtained from (1) by the application of Theorem
7.3.3 in Muirhead (1982, p.260). ¤

5 Conclusions

It is immediately apparent that from nonsymmetrised densities we can obtain
the same distributions of the eigenvalues of the beta type I and II matrices
obtained by Constantine (1963) in the case of the beta type I distribution and
by James (1964) and Muirhead (1982, pp. 450-451) for the case of the beta
type II distribution. What is important, as established in Theorems 2- 9, is
the fact that these nonsymmetrised densities are invariant under definitions
type 1 and 2 for the beta type I and II distributions. Note, too, that there are
various transformations to relate the beta type I distributions in their different
versions with the beta type II distributions (also for their different versions),
both in the central case and in the noncentral one. Thus it is possible in a
very simple way, for example, when we know the beta type I(A) density, to
determine the beta type I(B) density, see Srivastava and Khatri (1979, problem
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3.24, p. 102) and Gupta and Nagar (2000, Section 5.5).

Finally, let us observe that, for Theorems 5 and 9, the beta type 1(B) and
II(B) distributions are specified by Definitions 5.5.1 and 5.5.2 in Gupta and
Nagar (2000, pp. 190 and 192), respectively, irrespective of whether the type
I or type 2 definition is employed to define them. Similarly, for Theorems 4
and 8, we have the following definitions for the case of the beta type I(A) and
II(A) distributions, respectively:

Definition 10 (Noncentral matrix variate beta type I(A)) A symmet-
ric positive definite random matrix W : m×m is said to have non central ma-
trix variate beta type I(A) distributions with parameters a, b and Θ : m×m,
if its density function is given by

fW (W ) = BIm(W ; a, b) etr (−Θ) 1F1 ((a + b); b; Θ(I −W )) , 0 < W < I.

where a > (m− 1)/2 and b > (m− 1)/2.

and

Definition 11 (Noncentral matrix variate beta type II(A)) A symmet-
ric positive definite random matrix V : m×m is said to have non central matrix
variate beta type II(A) distributions with parameters a, b and Θ : m ×m, if
its density function is given by

fs(V ) = BIIm(V ; a, b) etr (−Θ) 1F1

(
(a + b); b; Θ(I + V )−1

)
, V > 0

where a > (m− 1)/2 and b > (m− 1)/2.
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